User manual for SCUT-NAA dataset

We developed a sampling device embedding two tri-axial accelerometers. We can collect two same tri-axial accelerations when sampling person performs each activity. SCUT-NAA dataset contains ten activities data contributed by 44 different persons with only one tri-axial accelerometer located in waist belt, pants pocket, and cloth pocket respectively. Ten activities are listed in below table.

Description of ten activities

	Description of ten activities
Activity	Description
Sitting & relaxing	Sitting & doing nothing
Walking	Walking 50 meters at normal speed
Walking quickly	Walking 50 meters quicker than normal speed
Walking backward	Backing you up 50 meters
Running	Jogging 100 meters
Step walking	Moving the feet alternately in the rhythm of a marching step without advancing
Jumping	Jumping 45s without advancing
Upstairs	
Downstairs	
Bicycling	Bicycling, but not very fast

➤ Data from the accelerometer has the following attributes: time, acceleration along x axis (blue), acceleration along y axis (red), and acceleration along z axis (green).

Examples of raw signals for different activities

The data stream is in plain text format. Each row contains the X, Y and Z values of a data point. There are comma "," between X and Y, Y and Z values.

Line #	Description		
1	X value of the 1 st	Y value of the 1 st	Z value of the 1 st
	data point	data point	data point
2	X value of the 2 nd	Y value of the 2 nd	Z value of the 2 nd
	data point	data point	data point
3	X value of the 3 rd	Y value of the 3 rd	Z value of the 3 rd
	data point	data point	data point
N	X value of the	Y value of the	Z value of the N-1
	N-1 data point	N-1 data point	data point

Examples:

>	130,156,123
	129,154,121
	130,154,118
	130,154,116
	127,154,117
	124,155,118
	121,156,122
	117,156,137
	114,157,153
	118,160,158
	127,164,150
	135,167,141
	139,167,133
	142,164,131
	141,160,127
	140,156,124
	137,154,125
	132,154,128
	127,150,130
	123,147,132
	119,145,134
	117,144,137
	117,144,139

120,145,139 122,145,138 126,145,136 129,145,133 131,144,132 132,144,133 131,145,135 130,146,136 129,145,137 128,145,137 127,144,136 126,144,137 125,144,138 125,145,138 124,145,137 124,146,137 124,147,136 125,148,136 126,148,136

- 126,149,136
- 127,149,135
- 127,149,134
- 128,149,135
- 129,149,135
- 129,151,135
- 128,151,136
- 127,151,135
- 127,151,135
- 127,150,136
- 128,150,136
- 128,150,136
- 128,151,135
- 129,152,134
- 129,153,133
- 130,154,132
- 131,155,132
- 132,157,131
- 132,158,130
- 132,160,131
- 132,159,132
- 130,154,134
- 126,148,134
- 123,148,130
- 121,152,126
- 125,157,127
- 130,159,124
- 129,154,119
- 125,150,118
- 126,154,121
- 127,162,127
- 131,169,130
- 132,171,130
- 130,162,130
- 130,102,130
- 131,155,127
- 132,151,125
- 131,149,123
- 130,150,122
- 131,158,126
- 132,164,127
- 132,166,127
- 134,164,126
- 136,158,126
- 136,155,126

```
134,152,125

133,150,125

132,151,124

130,153,125

129,154,125

128,154,125

127,153,126

127,153,126

128,151,126

129,152,121

132,149,126

130,149,125

133,152,123
```

To convert the value in our dataset (supposed it is denoted as x) to the real acceleration value (supposed it is denoted as g_x), just apply the following equation: $g_x = (x-128)/26$